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Abstract
A mean field theory of dipolar relaxation in a system of interacting dipoles is
developed on the basis of a local field picture. The distribution of orientations
of a selected dipole is assumed to satisfy a rotational diffusion equation of
Smoluchowski type with time-dependent potential determined self-consistently
from the mean dipole moment. The response to an oscillating Maxwell field
acting in a volume element is studied for arbitrary amplitude and frequency of
the field. For weak field the theory is similar to that developed by Debye, who
used the Lorentz local field factor, and derived an expression for the frequency-
dependent susceptibility of Clausius–Mossotti form. In the present theory the
local field factor is found from the static linear response in thermal equilibrium.
The same local field factor is used for strong field. Then the mean dipole
moment oscillates anharmonically,and the maximum absorption shifts to higher
frequency.

1. Introduction

The theory of dipolar relaxation in polar media has a long and distinguished history [1–8].
The theory applies to both electric and magnetic dipoles, and therefore finds application in
dielectrics, as well as in ferrofluids and ferrosolids.

In early work Debye [1, 9] assumed that a selected dipole performs rotational Brownian
motion in the applied field. For weak field and for a dilute system, where dipoles are
independent, this leads to the celebrated Debye formula for the dynamic susceptibility with
a single relaxation time calculated from the Stokes–Einstein formula for rotational friction.
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For dense systems Debye took account of dipolar interactions by means of a Lorentz local
field [1, 9, 10]. This led to an expression for the frequency-dependent susceptibility of
Clausius–Mossotti type.

Onsager [11] modified the theory of static linear response by developing a cavity model
from which it was evident that a selected dipole is subject to a reaction field, besides the Lorentz
local field. This leads to Onsager’s expression for the static susceptibility. The expression was
extended to include frequency dependence by Cole [12]. The Onsager–Cole expression was
modified by Fatuzzo and Mason [13], who took account of dielectric friction exerted by the
surrounding medium on the selected dipole. Their expression was rederived by Nee and
Zwanzig [14] by a different method. The coupling of dielectric friction to hydrodynamic flow
was taken into account by Felderhof [15, 16].

A more microscopic theory of the time-dependent response of dipolar liquids was
developed by Chandra and Bagchi [7, 17]. The theory is based on a self-consistent
Smoluchowski equation incorporating the equilibrium structure via the direct correlation
function. We use a similar equation, but restrict attention to the long-wavelength limit, where
less microscopic structural information is required. In our approach it suffices to specify the
local field factor. Our expression for the linear susceptibility is essentially identical to that of
Chandra and Bagchi [17]. The susceptibility takes the Debye form with an increased relaxation
time.

In recent computer simulations of a dipolar hard-sphere fluid Wang et al [18] made a
careful study of the equilibrium polarization or magnetization as a function of density and
field. It turns out that the static susceptibility is described poorly by Onsager’s cavity model.
We show in section 2 that the local field picture with a suitable local field factor describes the
thermal equilibrium data quite well. The same local field factor is then used in the theory of
dipolar relaxation.

We develop the theory of both linear and nonlinear response to an oscillating Maxwell
field on the basis of a rotational diffusion equation of Smoluchowski type with time-dependent
potential determined self-consistently from the mean dipole moment and with a local field
factor taken from the equilibrium linear response. The theory is a natural extension of our
earlier work for the dilute case [19]. For simplicity we assume cylindrical geometry with field
applied parallel to the symmetry axis, but discuss in section 6 how the theory can be extended
to different geometry. In principle the theory allows one to study the local nonlinear response
to a Maxwell field of arbitrary periodic time variation. In the following we assume that the
Maxwell field varies harmonically.

2. Dipoles in steady field

We consider a suspension of spherical particles with dipole moment µ = mu, where u is a
unit vector, immersed in a fluid of small molecules in thermal equilibrium at temperature T0.
We assume that the suspended particles interact as hard spheres besides having the long-range
dipolar interaction. For definiteness we consider magnetic dipoles, but our considerations
apply equally well in the electrical case. Conventionally the magnetic equation of state is
expressed in terms of the dimensionless parameters [6]

χ0 = nm2

3kT0
, y = 4πnm2

9kT0
= 4π

3
χ0, (1)

where n is the number density, and k is Boltzmann’s constant. In the following we use Gaussian
units. For dipolar hard spheres of radius a the strength of the dipolar interaction is characterized



The nonlinear response of an interacting dipolar system to an oscillating field 4013

by the parameter

λ = m2

8kT0a3
. (2)

For volume fraction φ = (4π/3)na3 we have the relation χ0 = (2/π)λφ.
For dipolar hard spheres the first three terms of the density expansion of the static

susceptibility are known, and given by [20–22]

χ = χ0 +
4π

3
χ2

0 +
π2

9
χ3

0 + O(χ4
0 ). (3)

To this order the susceptibility depends on density only via the product λφ, but at higher density
one must expect χ to depend separately on λ and φ. Wang et al [18] have found by computer
simulation that up to volume fraction φ = 0.2356 the susceptibility is described quite well by
just the first three terms of the expansion in equation (3).

In the following we use a local field picture in the study of the dynamical response. In this
picture the average field acting on a selected dipole in a volume element with local Maxwell
field H and magnetization M is given by

Hloc = H + γM (4)

with local field factor γ . In thermal equilibrium the probability of directions of the selected
dipole is given by the Boltzmann factor exp[βmu·Hloc], with β = 1/kT0. Hence one finds that
the dimensionless magnetization Feq , defined by Meq = nmFeq , is given by the self-consistent
equation

Feq = L(ξ + 3γχ0 Feq), (5)

where ξ = m H/kT0 is the dimensionless field, and L(ξ) is the Langevin function

L(ξ) = coth ξ − 1

ξ
. (6)

Expanding equation (5) to linear terms one finds for the susceptibility

χ = χ0

1 − γχ0
. (7)

We see by comparison with equation (3) that the first three terms of the expansion are reproduced
if we assume the local field factor to be given by

γ = 4π

3 + 15π
4 χ0

. (8)

Debye [9] used instead the Lorentz local field factor γL = 4π/3. Equation (7) with (8) may be
regarded as a Padé approximant to the susceptibility. At χ0 = 0.45, corresponding to volume
fraction φ = 0.2356 at λ = 3, the expression yields χ = 1.412, as compared with χ = 1.398
from the first three terms in equation (3). The computer simulation of Wang et al [18] yields
χ = 1.419. For a dipolar system of spherical particles with different short-range interaction,
the second numerical factor in the denominator of equation (8) will be slightly different.

It is of interest to compare equations (7) and (8) with Onsager’s expression [3, 11] for the
permeability µ = 1 + 4πχ :

(µ − 1)(2µ + 1)

µ
= 12πχ0 (Onsager). (9)

This corresponds to a local field factor

γO = 4π

3 + 8πχ
(10)



4014 B U Felderhof and R B Jones

Figure 1. A plot of the susceptibility χ as a function of χ0, as given by equations (7) and (8) (solid
curve), compared with Onsager expression (9) (dashed curve), and with the simulation results of
Wang et al [18] for interaction strength λ = 3 (dots).

depending self-consistently on the susceptibility. In figure 1 we plot the susceptibility χ

as a function of χ0, as given by equations (8) and (10) respectively, and compare with the
computer simulation data of Wang et al for the (nearly) hard-sphere system with interaction
strength λ = 3. It is evident that Onsager’s approximation performs quite poorly. The exact
permeability may be expressed as

(µ − 1)(2µ + 1)

µ
= 12πgKχ0 (11)

with Kirkwood factor [23] gK . Our approximation equation (8) corresponds to a Kirkwood
factor

gK = (16 + 15y)(16 + 31y + 30y2)

(16 − y)(16 + 47y + 45y2)
. (12)

This takes the value gK = 1 at χ0 = 0, and the value gK = 2.147 at χ0 = 0.45, showing that
the Kirkwood factor varies appreciably over the range considered. In the following we use the
local field factor γ given by equation (8).

It will be useful to have a notation for the equilibrium magnetization given by the solution
of equation (5) with local field factor γ . We use the abbreviation

C = γχ0, (13)

and define the function Feq(ξ; C) as the solution of equation (5). As an example we plot
in figure 2 the function Feq(ξ; C) as a function of ξ for C = 0.681191, corresponding to
χ0 = 0.45 for the local field factor given by equation (8). In the following we denote this
particular value of C as C0. We compare with the Langevin function L(ξ) = Feq(ξ; 0). This
shows that the equilibrium magnetization is affected appreciably by the local field effect.

3. Dipoles in oscillating field

Next we consider the dynamical response of the system to an oscillating field. We assume
that the macroscopic sample has cylindrical symmetry with symmetry axis along the z-
axis. Then the Maxwell magnetic field H(t) in the sample is identical to the applied field
H0(t) = H0ez cos ωt . We shall study both the linear and the nonlinear response of the
magnetization.
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Figure 2. A plot of dimensionless equilibrium magnetization Feq (ξ; C) as a function of field ξ

for C = C0 = 0.681 191 (solid curve), compared with the Langevin function for C = 0 (dashed
curve).

Earlier studies of the linear response have been based on extensions of the Onsager
expression equation (9) to nonzero frequency. For example, the Onsager–Cole expression [12]
for the dynamic permeability µ(ω) reads

[µ(ω) − 1][2µ(ω) + 1]

µ(ω)
= 12πχ0

1 − iωτD
(Onsager–Cole) (14)

with Debye relaxation time τD . Fatuzzo and Mason [13] modified the expression equation (14)
to take account of dielectric friction. Their result was rederived by Nee and Zwanzig [14] by
use of a different method. Felderhof [15, 16] calculated the dielectric friction correction
by taking account of the coupling to hydrodynamic flow. As we have shown above, the
Onsager approximation gives a poor account of the thermal equilibrium susceptibility. On
the other hand, the local field picture with local field factor given by equation (8) describes
the equilibrium magnetization quite well. In the following we therefore study the dynamical
response on the basis of the local field picture, with the local field factor given by equation (8).
It seems reasonable to assume that the microscopic configuration in the oscillating field is not
much different from that in equilibrium in zero field.

In the local field picture [1, 7, 9, 17] the distribution function of orientations f (u, t) is
assumed to satisfy the nonlinear Smoluchowski equation

∂ f

∂ t
= DRL · [L f + β(Lεloc) f ], (15)

where DR is the rotational diffusion coefficient, and L is the rotation operator

L = u × ∂

∂u
. (16)

The Debye relaxation time in equation (14) is τD = 1/(2DR). The potential energy of a dipole
in the local field Hloc(t) is

εloc(u, t) = −mu · Hloc(t). (17)

It is convenient to normalize to∫
f (u, t) du = 2π. (18)
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The local field is given by equation (4) with magnetization

M(t) = nm

2π

∫
u f (u, t) du. (19)

The distribution function will have cylindrical symmetry, so equation (15) can be simplified to

∂ f

∂ t
= DR

[
1

sin θ

∂

∂θ

(
sin θ

∂ f

∂θ
+ ξloc(t) sin2 θ f

)]
, (20)

where ξloc(t) = m Hloc(t)/kT0 is the acting field in dimensionless units.
It is clear that in a steady field H the time-independent solution of equation (15) is a

Boltzmann distribution with the local field. This leads to the self-consistent equation (5) for
the equilibrium magnetization.

Next we consider the linear response for small oscillatory field ξ(t) = ξ cos ωt with
ξ = m H0/kB T0. In dimensionless units the local field is ξloc(t) = ξ(t) + 3C F(t). To lowest
order in ξ the distribution is isotropic, f0(u) = 1/2. To first order in ξ one finds by linearization
of equation (20)

f (u, t) = 1

2
+

ξ cos α

2 − 2C
cos(ωt − α) cos θ, (21)

with lag angle

α(ω) = arctan
ωτR

2 − 2C
, (22)

where τR is the relaxation time τR = 1/DR . Hence one finds for the magnetization in weak
field

Fw(t) = 1

3
ξ

cos α

1 − C
cos(ωt − α). (23)

In general, the first-harmonic response is defined by

P(ξ, ω) = ξω

∫ T

0
F(t) cos ωt dt, (24)

where T = 2π/ω is the period. The dimensionless absorption is

Q(ξ, ω) = ξ

∫ T

0

dF

dt
cos ωt dt . (25)

To lowest order in ξ the first-harmonic response is

Pw(ξ, ω) = 4π

3
ξ2 1 − C

(2 − 2C)2 + ω2τ 2
R

. (26)

The absorption is to lowest order in ξ

Qw(ξ, ω) = π

3
ξ2 2ωτR

(2 − 2C)2 + ω2τ 2
R

. (27)

The frequency-dependent susceptibility is

χ(ω) = χ ′(ω) + iχ ′′(ω) (28)

with real and imaginary parts

χ ′(ω) = 1

3
nm2β

1 − C

(1 − C)2 + ω2τ 2
D

, χ ′′(ω) = 1

3
nm2β

ωτD

(1 − C)2 + ω2τ 2
D

. (29)

Hence the response is Lorentzian with relaxation time

τ = τD

1 − C
. (30)
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This shows that the dipolar interaction causes both the amplitude and the relaxation time to
increase. The result was found already by Debye [9], who assumed γ = 4π/3, and is closely
related to that found by Chandra and Bagchi [17]. The linear response is appreciably simpler
than that predicted by the Onsager–Cole equation (14).

The magnetization can be calculated to terms cubic in the applied field. We quote the
result for harmonic response and absorption:

P(ξ, ω) + iQ(ξ, ω) = πξ2

3

[
1

1 − C − iωτD

− ξ2

60

1

(1 − C)2 + ω2τ 2
D

(1 − iωτD)(9 − iωτD)

(1 − C − iωτD)2(3 − 2iωτD)
+ O(ξ4)

]
. (31)

This generalizes the result of Coffey and Paranjape [24] derived for the dilute case with C = 0.

4. Nonlinear response and macroscopic relaxation equation

In order to find the nonlinear response of the system to an oscillatory field ξ(t) = ξ cos ωt
of arbitrary amplitude ξ we must solve the nonlinear equation (20). In terms of the variable
x = cos θ the equation becomes

∂ f

∂ t
= DR

∂

∂x

[
(1 − x2)

∂ f

∂x
− (ξ cos ωt + 3C F(t))(1 − x2) f

]
, (32)

with magnetization F(t) determined self-consistently from

F(t) =
∫ 1

−1
x f (x, t) dx . (33)

We must find the solution that is periodic in time with period T = 2π/ω. Therefore we expand
in Legendre polynomials and harmonics:

f (x, t) =
∞∑

�=0

∞∑
m=−∞

f�m P�(x) exp[−imωt]. (34)

Substitution into equation (32) yields a set of equations for the amplitudes f�m for � � 1:

imω f�m = �(� + 1) f�m − �(� + 1)

2� − 1

∞∑
n=−∞

ηn f�−1,m−n +
�(� + 1)

2� + 3

∞∑
n=−∞

ηn f�+1,m−n (35)

with coefficients

ηn = 1
2 ξ [δn,1 + δn,−1] + 2 C f1n . (36)

The equation for � = 1 in equation (35) contains the inhomogeneous term

f00 = 1
2 . (37)

The equations have a symmetry which implies

f�m = 0 for � + m odd. (38)

In particular, the magnetization is composed of harmonics of frequency ω, 3ω, 5ω, . . ..
Equations (35) can be solved by truncation and iteration starting from η(0)

n = 1
2ξ [δn,1 + δn,−1].

The procedure converges rapidly. Substituting the amplitudes f�m into equation (34) one
obtains the distribution function f (x, t). Alternatively one can expand the function f (x, t) in
Legendre polynomials {P�(x)} with time-dependent coefficients { f�(t)}, and find the periodic
solution for the set of coupled differential equations by integration and iteration. This method
works also very well, and is faster if the applied field is strong.



4018 B U Felderhof and R B Jones

One recovers the equations for the dilute case by putting C = 0 in equation (36). We
found in our earlier work [19] that for that case the magnetization F(t) is well approximated
by the periodic solution FM (t) of the macroscopic equation of Martsenyuk et al [25]. It is
clear from the structure of equations (34) and (35) that one expects a similar state of affairs
here, provided the macroscopic equation is modified for the local field effect in the form

dFM

dt
= −2DR

[
FM (t) − FM (t)

ξeM (t)
(ξ cos ωt + 3C FM (t))

]
, (39)

where the effective field ξeM (t) is related to the magnetization FM (t) by

FM (t) = L(ξeM (t)). (40)

It is clearly easier to solve the single macroscopic equation (39) than the set of equations (35).
We do in fact find that equation (39) yields a good approximation to the magnetization, even
though the distribution function f (u, t) may be rather different from the corresponding quasi-
equilibrium distribution of Boltzmann form with potential energy equation (17). Actually it
is more convenient to solve the differential equation for the effective field ξeM (t), and then
find the magnetization FM (t) from equation (40). It is easily checked that for small field the
solution of the linearized macroscopic equation is identical with the function Fw(t) given by
equation (23). We denote the values of the first-harmonic response and absorption calculated
from the macroscopic approximation FM (t) by PM (ξ, ω) and QM(ξ, ω).

In the zero-frequency limit the distribution function to a good approximation takes the
quasi-equilibrium form. Hence in this limit the magnetization is given by

Fad(t) = Feq(ξ cos ωt; C). (41)

This yields for the first-harmonic response at zero frequency

P(ξ, 0) = ξ

∫ 2π

0
Feq(ξ cos τ ; C) cos τ dτ. (42)

For small ξ this reduces to Pw(ξ, 0) = πξ2/(3 − 3C). In figure 3 we plot 3P(ξ, 0)/(πξ2) as
a function of ξ . The plot shows that for large ξ the local field effect on the value of P(ξ, 0) is
small. However, even for large ξ the effect of the local field on the absorption is appreciable.
As an example we consider ξ = 10 and ωτR = 0.5. For these values of ξ and ω and for
C = 0 we find P(10, 0.5DR) = 33.348, whereas P(10, 0.5DR) = 34.133 for C = C0.
On the other hand, we find for the absorption for C = 0 the value Q(10, 0.5DR) = 5.396,
whereas Q(10, 0.5DR) = 7.683 for C = C0, i.e. more than 42% higher than for C = 0.
We also compare these values with those found from the macroscopic equation. For C = 0
we find PM (10, 0.5DR) = 33.378 and QM(10, 0.5DR) = 5.322. For C = C0 we find
PM (10, 0.5DR) = 34.159 and QM (10, 0.5DR) = 7.622. This shows that the macroscopic
approximation is reasonably accurate.

The increased absorption with increasing C is also evident from a parametric plot of the
magnetization F(t) against the field ξ cos ωt . The plot for one period shows a hysteresis loop.
In figure 4 we show the parametric plots for ξ = 10, ωτR = 0.5 for C = 0 and C0 respectively.
The second hysteresis loop is wider, corresponding to increased absorption.

It is also of interest to have a measure for the deviation from simple harmonic behaviour.
It is evident from equation (21) that for weak field only the first harmonic contributes to the
magnetization, albeit with a phase lag. More generally we define the first-harmonic fraction
as the ratio

�1 = | f11|2
/ ∞∑

n=1

| f1n|2. (43)
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Figure 3. A plot of the function P(ξ, 0) as given by equation (42) as a function of field ξ for
C = C0 (solid curve) and for C = 0 (dashed curve).

Figure 4. A parametric plot of magnetization F(t) and field ξ cos ωt for ξ = 10, ωτR = 0.5 for
C = C0 (solid curve) and for C = 0 (dashed curve).

For ξ = 10, ωτR = 0.5, one finds �1 = 0.946 for C = 0, and �1 = 0.924 for C = C0.
The corresponding values for the solution of the macroscopic equation are �1M = 0.945 for
C = 0, and �1M = 0.924 for C = C0. Even though the values of �1 are not much less than
unity, the hysteresis loop differs markedly from an ellipse. In order to get the accuracy quoted
we need to include harmonics up to order 21. In figure 5 we show for fixed field ξ = 10
that the hysteresis loop becomes more and more elliptical as the frequency increases. At high
frequency the solution tends to that for the weak-field limit, since the magnetization cannot
follow the field.

The absorption Qw(ξ, ω) calculated from the linearized theory shows a resonance when
plotted as a function of log10 ωτR with maximum at ωmw = (2 − 2C)/τR , corresponding
to relaxation time τD/(1 − C). In figure 6 we plot the reduced first-harmonic response
P(ξ, ω)/P(ξ, 0) as a function of log10 ωτR for ξ = 10 and C = C0, as well as the
reduced absorption Q(ξ, ω)/P(ξ, 0). We compare with the quantities Pw(ξ, ω)/Pw(ξ, 0)

and Qw(ξ, ω)/Pw(ξ, 0) valid in the weak-field limit. The latter are related by Kramers–
Kronig relations. The plot shows a significant qualitative difference for strong field. We
also plot the corresponding quantities calculated from the macroscopic equation. The
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Figure 5. Parametric plots of magnetization F(t) and field ξ cos ωt for ξ = 10 for C = C0 and
frequencies ωτR = 1, 3, 5, . . . , 17 (solid curves), and corresponding plots for C = 0 (dashed
curves).

Figure 6. A plot of the reduced functions P(ξ,ω)/P(ξ, 0) and Q(ξ, ω)/P(ξ, 0) as functions of
log10 ωτR for ξ = 10 (solid curves) and C = C0, compared with the quantities Pw(ξ, ω)/Pw(ξ, 0)

and Qw(ξ, ω)/Pw(ξ, 0) valid in the weak-field limit (dotted curves), as well as with the quantities
PM (ξ,ω)/P(ξ, 0) and QM (ξ, ω)/P(ξ, 0) calculated from the effective field approximation (long
dashes).

approximate theory performs quite well. At the maximum at ωm = 5.243DR the exact value
is Q(10, ωm) = 26.358, whereas the approximate value is QM (10, ωm) = 26.791. At high
frequency both curves tend to the expression for weak field, equation (27). This expression
has its maximum Qw(10, (2 − 2C)DR) = 164.236 at ωmw = (2 − 2C)DR . At the maximum
P(10, ωm) = 12.617, whereas the approximate value is PM (10, ωm) = 11.778. The value at
zero frequency is P(10, 0) = 35.401.

5. Free energy, absorption, and dissipation

In this section we discuss the relation between absorption, defined as work done on the system
by the oscillating field during a period, and dissipation, defined as the entropy production due
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to irreversible processes occurring in the system. In order to explore the relationship we must
consider the free energy and entropy of non-equilibrium states. It is of interest to see how our
earlier discussion is affected by the local field effect.

We can associate an entropy per particle with the non-equilibrium distribution f (θ, t)
according to Boltzmann’s expression

S(t) = −k
∫ π

0
f (θ, t) ln f (θ, t) sin θ dθ. (44)

The corresponding free energy per particle is

F = U − T0S, (45)

where U is the mean potential energy

U(t) =
∫ π

0
ε(θ, t) f (θ, t) sin θ dθ − 3

2 CkT0 F2(t), (46)

with ε(θ, t) = −m H (t) cosθ . Thus the free energy is a functional F[ f ] of the distribution
function. Note the factor 1

2 in the last term of equation (46) in comparison with the local field
appearing in equation (32). The rate of change of the free energy is

dF
dt

=
∫ π

0
[ε(θ, t) + kT0 ln f ]

∂ f

∂ t
sin θ dθ +

∫ π

0

∂ε

∂ t
f sin θ dθ − 3CkT0 F

dF

dt
. (47)

Substituting equation (32) and performing an integration by parts we transform this to

dF
dt

= −kT0 DR

∫ 1

−1
(1 − x2)

[
∂ ln f

∂x
− ξ cos ωt − 3C F

]2

f (x, t) dx − m F(t)
dH

dt
. (48)

Integrating this expression over a period we find for the periodic solution of equation (32) the
relation

D(ξ, ω) = Q(ξ, ω), (49)

where D(ξ, ω) is the dissipation defined by

D(ξ, ω) = DR

∫ 1

−1

∫ T

0
(1 − x2)

[
∂ ln f

∂x
− ξ cos ωt − 3C F

]2

f (x, t) dx dt . (50)

Clearly the integrand is positive in the whole xt-rectangle. Hence the dissipation is positive.
The relation (49) shows that the dissipation is calculated conveniently from the absorption,
i.e. from the work done on the system.

For distributions of the exponential form

fe(x, t) = exp[ξe(t)x]/Z(ξe(t)), (51)

so-called e-distributions, the free energy becomes a function Fe(F) of the magnetization F , or
alternatively of the effective field ξe related to F by F = L(ξe). By substitution of equation (51)
into (44) one finds for the corresponding entropy

Se(F) = k ln Z(ξe) − kξe F. (52)

Hence the free energy is

βFe(F, t) = (ξe − ξ cos ωt)F − ln Z(ξe) − 3
2 C F2. (53)

We see by use of the relation

F = ∂ ln Z(ξe)

∂ξe
(54)
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that ξe is the thermodynamic force conjugate to F :

ξe = −1

k

∂Se(F)

∂ F
. (55)

The entropy Se(F) is an even function of the magnetization, Se(−F) = Se(F), and
Se(0) = k ln 2. From equations (53) and (54) we find

ξe − ξ cos ωt − 3C F = ∂βFe

∂ F
. (56)

If at time t the distribution has the exponential form assumed in equation (51), then the
rate of change of the magnetization at that time is

dF

dt

∣∣∣∣
e

=
∫ 1

−1
x
∂ fe

∂ t
dx . (57)

Substituting from equation (32) one finds

dF

dt

∣∣∣∣
e

= DR(ξ cos ωt + 3C F − ξe)〈sin2 θ〉ξe . (58)

By use of equation (56) we can write

dF

dt

∣∣∣∣
e

= −�(F)β
∂Fe

∂ F
(59)

with Onsager coefficient [19]

�(F) = DR〈sin2 θ〉ξe(F). (60)

One obtains the macroscopic relaxation equation (39) by postulating that

dFM

dt
= −�(FM )β

∂Fe

∂ FM
(61)

holds at all times. The rate coefficient can be expressed alternatively as

�(FM ) = 2DR
FM

ξeM
. (62)

Multiplying equation (61) by ξ cos ωt + 3C FM(t) − ξeM (t) and integrating over a period,
we obtain by use of equation (56)
∫ T

0
(ξ cos ωt + 3C FM(t) − ξeM(t))

dFM

dt
dt =

∫ T

0
�(FM )

(
β

∂Fe

∂ FM

)2

dt . (63)

The left-hand side of this equation can be simplified to QM (ξ, ω) by use of equation (55), so
the equation can be expressed as

QM (ξ, ω) = DM(ξ, ω) (64)

with the macroscopic dissipation

DM (ξ, ω) =
∫ T

0
�(FM )

(
β

∂Fe

∂ FM

)2

dt . (65)

The dissipation can be calculated from the absorption by use of equation (64). It is evident
that DM (ξ, ω) provides a macroscopic approximation to the actual dissipation D(ξ, ω), given
by equation (50).
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6. Discussion

Up till now we have assumed that the macroscopic sample has cylindrical shape, though with
a cross-section that is not necessarily circular. As a consequence, for applied field parallel
to the symmetry axis, the Maxwell field in the sample is identical to that field. For different
macroscopic geometry the Maxwell field differs from the applied field, since the induced
magnetization itself generates a field in addition to the applied field. The situation is simple
only for a uniform ferrofluid in ellipsoidal geometry with applied field parallel to one of the
axes. In that case, for applied field H0(t) = H0ez cos ωt the Maxwell field inside the sample
is uniform and given by

H(t) = H0ez cos ωt − γS M(t)ez , (66)

where the last term is the demagnetizing field with shape-dependent factor γS . As a
consequence the local field in equation (4) becomes

Hloc = H0ez cos ωt + (γ − γS)M(t)ez . (67)

Hence all our preceding considerations apply with the replacement of the coefficient C by
�S = (γ − γS)χ0. The periodic response of the system clearly depends on the sample shape
via the coefficient γS . The Maxwell field in general will have a shape-dependent contribution
of higher harmonics. Only for weak applied field is the response purely harmonic, and can one
define a susceptibility χ(ω) independent of sample shape, and given by equation (29). It is easy
to show explicitly that in the linear regime the shape-dependent coefficient γS does not occur in
the linear relation between M and H . More generally, it is clear that equations (4), (19), and
(20) provide a mechanism by which any periodic function H(t) yields a periodic magnetization
M(t) in the same direction. Thus there is a nonlinear mapping M(t) = X[H(t)] dependent
on the local field factor γ , but not on the shape-dependent factor γS . In combination with
equation (66) this provides an algorithm for finding the magnetization M(t) and the field
H(t) by iteration. Clearly both the magnetization and the field depend on γS , even though the
nonlinear mapping X does not.

In summary, we have shown that the linear and nonlinear responses of a system of
interacting dipoles to an applied oscillating field can be calculated from a nonlinear rotational
diffusion equation with local field effect. The local response depends on the shape of
the macroscopic sample according to Maxwell theory. We have derived explicit results
for cylindrical and ellipsoidal geometry with applied field parallel to an axis of symmetry.
The choice of cylindrical geometry yields direct insight into the local nonlinear constitutive
equation.

In the linear regime the frequency-dependent susceptibility χ(ω) is given by the simple
expression (29). This extends the expressions (7) and (8) for the static response to nonzero
frequency. The expression for the static response agrees much better with computer simulation
data of Wang et al [18] for a system of hard spheres with dipolar interaction than Onsager’s
equation (9).

Admittedly, the local field picture represents a simplified model of the actual situation.
Nonetheless it would be desirable to confront its predictions with experiment and computer
simulation. The local field picture provides a benchmark to be compared with more
sophisticated theories. Onsager’s cavity model with its improvements provides suggestions
for further exploration. A theory involving a typical pair of particles with interactions
and correlations, as well as dielectric friction of the pair with its environment, including
hydrodynamic effects, would necessarily be more involved.
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